How RL Enhances Spatial Understanding?
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Some Quotes From The Bitter Lesson

“One thing that should be learned from the bitter lesson is the great power of general purpose
methods, of methods that continue to scale with increased computation even as the available
computation becomes very great. The two methods that seem to scale arbitrarily in this way
are search and learning.”

— Rich Sutton



From Specialized Methods to General Methods
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3D models represent a significant shift from specialized methods, which are designed for specific tasks,
to foundation models that can handle a wide range of tasks.



Efficient 3D Reconstruction: ZPressor (2025)
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ZPressor is an efficient feed-forward 3D scene reconstruction model with bottleneck-aware compression.

Weijie Wang, Yuedong Chen, Zeyu Zhang et al. ZPressor: Bottleneck-Aware Compression for Scalable
Feed-Forward 3DGS (NeurlPS 2025)



Results of ZPressor (2025)

Visualization on DL3DV (36 Input Views)

DepthSplat | " DepthSplat + ZPressor ™=
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Geometric Prior Matters: PM-Loss (2025)
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PM-Loss is a novel regularization loss based on a learned point map for feed-forward 3DGS, leading to
smoother 3D geometry and better rendering.

Duochao Shi, Weijie Wang, Yuedong Chen, Zeyu Zhang et al. Revisiting Depth Representations for
Feed-Forward 3D Gaussian Splatting (2025)



Results of PM-Loss (2025)

DepthSplat DepthSplat + PM-Loss

However, depth discontinuities at object boundaries often lead to fragmented or sparse point clouds,
degrading rendering quality—a well-known limitation of depth-based representations. To tackle this
issue, we introduce PM-Loss, a novel regularization loss based on a pointmap predicted by a
pre-trained transformer (Chamfer distance). Although the pointmap itself may be less accurate than
the depth map, it effectively enforces geometric smoothness, especially around object boundaries.



Results of PM-Loss (2025)

Depthsplat Depthsplat + PM-Loss




Voxel-Aligned Matters: VolSplat (2025)
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(a) Pixel-aligned Feed-forward 3DGS (b) Voxel-aligned Feed-forward 3DGS (Ours)

Pixel-aligned feed-forward 3DGS methods suffer from two primary limitations: 1) 2D feature matching
struggles to effectively resolve the multi-view alignment problem, and 2) the Gaussian density is
constrained and cannot be adaptively controlled according to scene complexity.

Weijie Wang, Yeqing Chen, Zeyu Zhang et al. VoISplat: Rethinking Feed-Forward 3D Gaussian Splatting with
Voxel-Aligned Prediction (2025)



Voxel-Aligned Matters: VolSplat (2025)
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Mutli-view Transformer for 2D Feature Extraction
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Given multi-view images as input, we first extract 2D features for each image using a
Transformer-based network and construct per-view cost volumes with plane sweeping. Depth Prediction
Module then estimates a depth map for each view, which is used to unproject the 2D features into 3D
space to form a voxel feature grid. Subsequently, we employ a sparse 3D decoder to refine these
features in 3D space and predict the parameters of a 3D Gaussian for each occupied voxel. Finally,
novel views are rendered from the predicted 3D Gaussians.



Results: VolSplat (2025)
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RealEstate 10K ScanNet

The results on the left are from RealEstatel0K, and the results on the right are from ScanNet.



3D Representation Learning: 3D CoCa (2025)
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3D CoCa leverages 3D multimodal representation learning to tackle scene understanding through
large-scale contrastive pretraining.

Ting Huang, Zeyu Zhang et al. 3D CoCa: Contrastive Learners are 3D Captioners (2025)



Results of 3D CoCa (2025)

Vote2Cap-DETR++: Aroom with a
large wooden dining table and
multiple chairs.

Vote2Cap-DETR++: Aroom with
several rectangular tables and
various items on them.

Vote2Cap-DETR++: Aroom
with a few tables, cluttered
items on top, and several
chairs nearby.

Vote2Cap-DETR++: A living
room with two sofas and a
small side table.

-

Ours: A spacious dining area
featuring a long wooden table
surrounded by several chairs, with
a painting on the wall.

\§

~
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Ours: An open space designed
for work or study, with multiple
tables and chairs arranged to
form a collective workspace, and
ample floor space around them.

=

) \around.

6urs: A messy workspace,
with various documents or
tools scattered on the tables
and a few chairs and
electronic devices placed

(.

AN

~

Ours: A cozy lounge area
featuring two brown sofas and
a coffee table, with a rug on
the floor and some decorative
items nearby.

J

GT: In a bright dining room, a long
wooden table is flanked by neatly
arranged chairs. Light filters in
through the window, and a

decorative painting adorns the wall.

GT: A spacious indoor setting
with several parallel tables and
chairs, offering walking and
working areas on all sides. The

"\ (GT: An office area, where

layout resembles a classroom.

~

tabletops are covered with
multiple items and documents.
Chairs and computer
accessories are set around the

) \room.

J

(GT: A comfortable living room )
setup with two leather sofas, a
small coffee table, and a rug
on the floor. The corner have a
musical instrument and

ana ments.

J

A visual comparison on the ScanRefer dataset showcasing indoor scenes described by
Vote2Cap-DETR++4-, 3D CoCa (Ours), and the ground truth (GT).



3D Data-Centric Learning: DC-Scene (2025)
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Point clouds and captions are encoded, scored with 3D CLIP, and filtered by the Dual-Indicator Quality (DIQ)
module to select top-k candidates. A Curriculum Scheduler trains the Multi-Modal Decoder, while a feedback
loop updates CLIP scores with caption loss, forming a data-centric learning cycle.

Ting Huang, Zeyu Zhang et al. DC-Scene: Data-Centric Learning for 3D Scene Understanding (2025)



Results of DC-Scene (2025)

Baseline(full data): a small kitchen
with cabinets, a sink, and a white
appliance on the right.

Baseline(full data): a bedroom with
two beds, a desk and some clutter on
the floor.

Baseline(full data): a small bedroom
with a bed, green carpet, and a
bathroom to the right.

(DC-Scene(Top-75%): a kitchen )
where wooden cabinets frame a
metal sink beneath a wall picture,
while a white washer-dryer sits to
the right of the light-tiled floor that

\opens into a carpeted hallway. )

[DC-Scene(Top-75%): a cramped )
dormitory room with parallel single
beds, a back-wall desk piled high with
textbooks, and clothing and an open
teal suitcase strewn over the dark-blue

\carpet. Y,

(DC-Scene(Top-75%): a bedroom )
featuring a bed topped with a bright
blue blanket, a wicker hamper near the
footboard, and an ensuite bathroom on
the right where a basin and shower are
\visible through the open doorway. y

/GT: A compact galley kitchen with )
wooden upper and lower cabinets,
a stainless-steel sink centered
along the back work-top, and a
white washer-dryer unit standing

\on the right side of the tiled floor.  /

/GT: A student dorm room containing )
two single beds along opposite walls, a
wooden study desk cluttered with
books and electronics, and clothes
plus an open turquoise suitcase

\scattered across the blue carpet. Y,

/GT: A small bedroom with a light-wood "\
single bed covered by a blue throw,
green carpet flooring, a wicker laundry
basket at the foot of the bed, and an
adjoining bathroom on the right

\showing a white sink and shower stall. /

For three validation scenes from the ScanRefer dataset, we present the rendered point cloud mesh (top
row), followed by captions generated by three sources: the full-data baseline model (in pink), our
DC-Scene model trained on the top-75% DIQ samples (in red), and the human-annotated ground
truth (in green).



What's next for 3D foundation models?

@ How can we achieve zero-shot generalizability across different tasks given the domain
knowledge gap between them?

@ How can we adjust a foundation model after conventional supervised post-training when
the outcomes are unsatisfactory on specific tasks?

@ And most importantly, how can we ground our foundation model in the physical world?



Synthetic Data Helps Enhance Generalizability

Multimodal Data Scene Description Generator Scene Description Scene-30K

3
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In this apartment, there is a floor

3D Scene supporting the refrigerator. The
> 3 g ; room contains...The apartment is )23 o ,
Scene CC(pTIOﬂ well-equipped with various objects, I . :
nco ecod idi : .. :
2 proNiding coiiorddng Question: What is in the right
4 functionality for its inhabitants. :
corner of room by curtains?
CoT:
QueSTioni Wha.‘. . . .Pr‘omp.‘r ’ s To ide?}ify v;/hat 1; in (tihe rightfcorner
is in the right Following the scene description, think step by step and answer the ?h tde fgomt;--th ere r(ir?s ased on ... from ...
following question directly. Output format: > thedesk ... by the curtains.
corner of room <think>...reasoning...</think> <answer>..final answer...</answer>. e ,
. Pro The right corner of the room ... a
by curtains? desk.

CoT Data Engine. The point cloud of a scene is first sent to scene dscription generator to get a
description of the scene. Then based on the description, we apply Gemini-Pro to synthetic CoT data.



Scene-30K in 3D-R1
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Scene-30K contains diverse scene categories and question types. 3D-R1 demonstrates strong
performance across various tasks.



Generalizability: 3D-R1

3D Planning =

Human: Organize and tidy up the kitchen.

3D-R1:

1. Wipe the dinning table to remove ...

2. Push all chairs neatly under the table...
3. Empty the trash cans beside ...

3D Scene Captioning &

3D-R1: In the kitchen, there is a sink,
two cabinets, a kitchen counter, two
windows, two trash cans, and ten chairs.
The trash cans are in front of the chairs,
while the chairs are behind the trash
cans ...

3D Reasoning

Situation: Standing just inside the kitchen
doorway, facing the long dining table.
Question: Can I walk straight to the trash cans
beside the refrigerator without detouring around
the table?

3D Object Captioning @

el 3D-R1: No
This is a
black
television
mounted on . .
the wall. 3D Visual Grounding
Instruction: The metallic ventilation unit
hanging above the stove top.
3D Question Answering 0 3D Dialogue e 3D-R1:
Question: What is the large rectangular piece I need help tidying my kitchen. Could you see if t%le large table in
of furniture in the center of the kitchen with N Can you assist me? _ the center is clean?
several tall chairs arranged around it? = ="
& &)
3D-R1: Dining table. ) ®

3D-R1 is a generalist model capable of handling various downstream tasks and applications in a
zero-shot manner with incredible generalizability, significantly reducing the need for expensive
adaptation.



Adjust Output: Reinforcement Learning with Verifiable Rewards (RLVR)

How many
chairs
face the
table?
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___________________________
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Model
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it is necessary to identify theirs location.

— aQ —
A o T — * b 6T bounding box
71 3 ® 1 ) R, = 10U(b,b") b* predicted bounding box CLIP( - ) CLIP fext encoder
A S o T
8o
Y 6. coe O :
S —t utput format: .
) ) [ <think> </think><answer> Rrormat = {(1) if answer adheres Zi}{::ﬁget
AN 'n </answer> ’
~——— ——

The policy model generates N outputs from a point cloud and question. Then perception loU, semantic
CLIP-similarity, and format-adherence rewards are computed, grouped, and combined with a KL term
to a frozen reference model to update the policy.



Enhanced Reasoning

290 SFT Zero-shot RL Zero-shot RL Fine-tuned

220

CIDEr (C)
2
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3D-DC 3D-DC 3D-DC 3D-QA 3D Dialogue 3D Planning 3D Reasoning
ScanRefer @0.25 ScanRefer @0.5 Nr3D @0.5 ScanQA 3D-LLM 3D-LLM 3D-LLM

3D-R1 exhibits remarkable generalizability with enhanced reasoning capabilities.



Foundation Model: 3D-R1
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3D-R1 is an open-source generalist model that enhances the reasoning of 3D VLMs for unified scene
understanding.



3D Scene Dense Captioning (3D-DC)

3D-DC




3D Object Captioning

3D Object Captioning




3D Visual Grounding (3D-VG)

3D-VG




3D Question Answering (3D-QA)

3D-QA




3D Dialogue

3D Dialogue




3D Reasoning

3D Reasoning
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Zero-Shot Results




System and Memory: Nav-R1

What if we ground a 3D foundation model in embodied scenes? How can its reasoning
approach human-level intelligence? This is inspired by psychology.

“The division of labor between System 1 (fast) and System 2 (slow) is highly efficient: it
minimizes effort and optimizes performance.”
— Daniel Kahneman (Nobel Prize in Economics)



Fast-in-Slow: Nav-R1

Asynchronous Sampling Egocentric Views 20) 3D Scene : 2D image token
000 RGB Image Depth Map  Depth token
Iy Dual 4 : 3D point cloud token
" ,
system T 1
: 4 , ﬁ l - | ' : Language token
G & é : System 1 forward pass
Sample Images Image Encoder Depth Encoder : System 2 forward pass
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;5? E ® Fast system aeeles
S B
&% System 1
] e bl 0960
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= w e i A
- z A b i
=, Instruction Slow system 2 3 e ~ ~
= 2]
(System 2) 0 5 z Ei‘ %
Instruction: Walk - || - Reasoning: The best
across living room to 5 = exploratory action from the
kitchen bar. Stop at = Al current position is to turn
bar stools. 4 2 left...

Nav-R1 features a Fast-in-Slow design that ensures rapid decision-making within long-horizon
planning..



Synthetic Data: Nav-CoT-110K

System Instruction Q Nav-CoT

Imagine you are a robot designed for navigation tasks in 3D scenes. Your instruction is 'Exit the bedroom,
enter the bathroom, wait at the toilet.’

<think>...My instruction is to go to
the bathroom. I saw the bathroom
entrance in Image 3. My current

Text Prompt } location (Image 6) is in a corner of

History View & m._

the room, facing a window. This is
away from the bathroom entrance
} A - I previously saw. To get back on

| the cﬁﬁ’ﬁ’iﬁﬂ?lﬁes‘iﬁ?ﬁﬂgi"6)f o Gen;;m 2.5 track, I need to turn away from
ro this window and reorient myself

t towards the interior of the suite

l Current View You are provided with a sequence
! | of egocentric observations from

previous timesteps(Images 1-5) and

i 12,345 by 6 g

i mage N N where the bathroom is located.
Large Turning left will pan my view away
AETERIGRTione Vision- from the corner and back towards
the main living area, fro here I

Your task is to select the next action, and action options include: '{ Language i . 2 2 f ew
Model can  navigate  towards  the
bathroom entrance shown in
Movetromare oE e Turn left 30° ‘1 Turn right 30° r Stop @ Image 3. Turhing right would just

face me more into the corner wall.
Therefore, turning left is the
correct action to find the path to
Output Format [0 the bathroom again.</think>

== <action>turn left 30°</action>

Based on the instruction and egocentric observations, reason step by step and provide your response.

Output format: <think>.the reasoning content..</think> <action>..the next action..</action>. Strictly
adhere to the output format and do not output any other information.

Jd

We construct the Nav-CoT-110K dataset by defining navigation instructions, integrating egocentric
visual inputs, providing action options and specifying the output format. These components are fed
into Gemini 2.5 Pro, which generates step-by-step reasoning and action decisions aligned with
navigation goals.



Adjust Output:

1= )
l = I : Question: Yoy
@ How many white chairs in the room? SN

Walk straight past the glass table with white chairs then turn left and go into
the room on the left. Wait at the entrance.
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) |
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| path p F\1, end P p—p ‘

= — — R Ry + R ‘

) navigation = ®path end

GRPO s P ‘
Group . % Output format: <think>..the reasoning content...</think>answer>... the R L if answer adheres to format
Compu’m'rlon final answer...</answer><action>... the next action...</action> format = |, otherwise

The pipeline of RL Policy. The policy model generates N outputs from text-image input. Then
understanding reward (answer correctness and semantic alignment), navigation reward (path fidelity
and endpoint accuracy), and format reward (structure adherence) are computed, grouped, and
combined with a KL term to a frozen reference model to update the policy.



Navigation Foundation Model: Nav-R1

n Start position O
X | |

Viewpoint A

Embodied Reasoning 4 Embodied Planning = Em

Situation: Standing in the bathroom, Human: 1 want to watch TV on the sofa. Instruction: Navigate to the bedroom and
facing the shower. What should I do? find a bed.

'@
a Question: Can I walk straight to the Nav-R1: ;}i‘, ) Nav-R1: m
P e ¢ 1 ;
[ ] How many pillows are on the bed? P Step 1. Turn on the TV... i 3 PRt iy 4 m
2 Step 2. Walk to the sofa... % d Step 2. Move forward i
.~ Nav-Rl1: No. You need to turn left to reach Step 3. Sit on the sofa ... iz Step 3. Turn right pes
@ the bathtub. Step 4. ... =

Nav-R1 is an embodied foundation model that integrates dialogue, reasoning, planning, and navigation
capabilities to enable intelligent interaction and task execution in 3D environments.



Results: Nav-R1 but Reduces Forgetting

TABLE

IV

EMBODIED DIALOGUE AND PLANNING RESULTS ON 3D-LLM [18]. EMBODIED REASONING RESULTS ON SQA3D [33].

Method

Embodied dialogue

Embodied planning

Embodied reasoning

Ct B4t Mt Rt Ct B4t Mt Rt Ct B-4t Mt RY
LL3DA [10] 190.01 2395 2350 40.61 12880 1295 17.05 39.25 . - - -
Spatial 3D-LLM [46] . - - ; 19592 1465 1895 36.93 . - - .
LSceneLLM [56] 104.98 - 2126 36.00 214.63 . 2105  47.05 . : . .
LEO [22] ; ; . - ; . - ; 12470 940 2550 48.40
3D-R1 [23] 280.34 3945 66.89 5534 23050 2545 4834 5567 13867 23.56 3545  60.02
Nav-R1 (Ours) 281.20 3934 67.53 55.12 230.52 2598 47.11 5623 13998 2320 36.15 59.50

The results show that our parameter-efficient tuning during hierarchical post-training effectively reduces
forgetting when adapting the foundation model from understanding to navigation, while the model still
maintains comparable performance on embodied scene understanding.



Results: Nav-R1

(((i))) @ Jt X,

Nav-R1 PEKING UNIVERSITY

Nav-R1: Reasoning and Navigation in Embodied Scenes

Qingxiang Liu, Ting Huang, Zeyu Zhang, Hao Tang




Similar Idea for Arm Robots: VLA-R1

(Stage1: SFT

Image

o

CoT Engine

Multimodal Large Language Model gy

Instruction
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D
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(Stage2: GRPO-Policy
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. 2D Trajectory /
Reasoning Affordance Box
e /
. N
Action Module
Depth Camera Inverse
Kinematics || ~--------------------" "------------------II:_
Robot URDF
R _ {1 , if the reply conforms to the format
Robot Joint Angle Format 1), otherwise
A3 JAN L T L e L e P L L L PV L P P L PP P P TP LV 2

Training has two stages: Stage 1 uses SFT with CoT supervision to learn reasoning over images and
instructions; Stage 2 refines reasoning and actions via RL with verifiable rewards (GRPO). During
inference, a control stack converts outputs into joint-level robot commands.



Results: VLA-R1

VLA-R1: Enhancing Reasoning in Vision-
Language-Action Models



Bridging the Domain Gap in Post-Training: StereoAdapter

(2)

(b)

StereoAdapter is a self-supervised adaptive model that allows robust underwater depth estimation.
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Synthetic Data: UW-StereoDepth-40K

Data synthesis. Unreal Engine 5 rendering for UW-StereoDepth-40K dataset.



Results: StereoAdapter

OO

StereoAdapter
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PEKING UNIVERSITY

StereoAdapter: Adapting Stereo Depth Estimation to Underwater Scenes

Zhengri Wu, Yiran Wang, Yu Wen, Zeyu Zhang, Biao Wu, Hao Tang



Works In Progress

@ Vision—Language—Action models for mobile robots such as robot dogs, UAVs, and
humanoid robots.

@ Real-time 3D Reconstruction for Mobile Robots
@ Video World Models

Go to the trashcan and distinguish Go to the water barrel and avoid Go through the gap between the
the water barrel the box chairs and go to the table

2
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£ . =
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3 m .

Our mobile robot’'s VLA model follows user instructions to perform scene understanding, navigation,
and action.

Video



@ Do not abuse reinforcement learning for post-training; use RL only to adjust the
foundation model’s output.

@ Synthetic data and data-driven methods are the key to achieving scalability and
generalizability.

@ Work on unimodal LLMs that perform next-token prediction will not achieve advanced

machine intelligence. If you are interested in human-level intelligence, do not rely solely
on LLMs; instead, enhance spatial awareness in visual foundation models.



Thank you.




