
FPSAttention: Training-Aware FP8 and Sparsity
Co-Design for Fast Video Diffusion

 Akide Liu*, Zeyu Zhang*, Zhexin Li†, Xuehai Bai†, Yuanjie Xing†, Yizeng Han, Jiasheng
Tang‡, Jichao Wu, Mingyang Yang, Weihua Chen, Jiahao He, Yuanyu He, Fan Wang,

Gholamreza Haffari, Bohan Zhuang‡

 Monash University
 DAMO Academy, Alibaba Group

 ZIP Lab, Zhejiang University
Hupan Lab

Chapter 01

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

The Efficiency Challenge in Video Diffusion

• Video diffusion models achieve great quality but are computationally heavy.

• Hundreds of denoising steps → slow sampling.

• Spatio-temporal attention ≈ 70% of total inference time.

• Example: Wan 2.1-14B takes ~2.5 hours to generate a 5 s video.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Quantization and Sparsity in Video Diffusion

• Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up
computation.

• Sparsity skips less important tokens to reduce quadratic attention cost.

• Each method works independently but fails to optimize jointly.

• However, naively combining them leads to large performance drop.

• FP8 quantization and sparsity co-design is underexplored.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Why Simple Combination Fails?

• Quantization errors distort high-magnitude attention scores.

• Sparsity selects those high-magnitude tokens → error amplification.

• No training-time adaptation ⇒ large training-inference gap.

• Need a joint, training-aware optimization to balance efficiency and quality.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Our Motivation

• Efficiency is crucial for real-world deployment.

• Quantization and sparsity offer complementary benefits — if optimized together.

• Solve the training-inference gap

• We aim to co-design a training-aware framework that achieves high speed without
quality loss in video diffusion

Chapter 02

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Three core innovations:

• Unified 3D tile-wise granularity for both
quantization & sparsity.

• Denoising step-aware strategy adapting
compression across diffusion timesteps.

• Hardware-optimized kernel leveraging
FlashAttention & NVIDIA Hopper features.

• Achieves 7.09× kernel and 4.96× end-to-
end speedup on Wan 2.1–14B without
quality loss

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Tile-wise FP8 Quantization:

• Divide Q/K/V into 3D tiles aligned with GPU
compute units.

• Each tile quantized independently with local
scaling factors.

• Preserves fine-grained activation dynamics,
reduces memory cost 2×.

• Perfectly matches structured sparsity pattern
and FlashAttention kernel

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Denoising Step-Aware Strategy

• Diffusion steps show varying
sensitivity to compression errors.

• Early & late steps → tolerate
coarse quantization & high
sparsity.

• Mid steps → require fine
precision & dense attention.

• Adaptive schedule aligns with
diffusion dynamics

Chapter 03

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

1 ️⃣ Training-aware co-design matters
Jointly optimizing quantization and sparsity during training causes far less
quality loss than post-hoc (training-free) compression — and unlocks much
higher performance ceilings.

2 ️⃣ Algorithm × Infrastructure synergy
Real acceleration requires tight coupling between algorithm design and
system/infrastructure implementation, rather than isolated model-level tricks.

3 ️⃣ FP8 and sparse attention for future deployment
FP8 quantization and structured sparse attention are key enablers for mobile
inference and video world models, offering practical scalability to real
applications.

Paper Webpage

感谢聆听

