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Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

The Efficiency Challenge in Video Diffusion

• Video diffusion models achieve great quality but are computationally heavy.

• Hundreds of denoising steps → slow sampling.

• Spatio-temporal attention ≈ 70% of total inference time.

• Example: Wan 2.1-14B takes ~2.5 hours to generate a 5 s video.
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Quantization and Sparsity in Video Diffusion

• Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up 
computation.

• Sparsity skips less important tokens to reduce quadratic attention cost.

• Each method works independently but fails to optimize jointly.

• However, naively combining them leads to large performance drop.

• FP8 quantization and sparsity co-design is underexplored.
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Why Simple Combination Fails?

• Quantization errors distort high-magnitude attention scores.

• Sparsity selects those high-magnitude tokens → error amplification.

• No training-time adaptation ⇒ large training-inference gap.

• Need a joint, training-aware optimization to balance efficiency and quality.
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Our Motivation

• Efficiency is crucial for real-world deployment.

• Quantization and sparsity offer complementary benefits — if optimized together.

• Solve the training-inference gap

• We aim to co-design a training-aware framework that achieves high speed without 
quality loss in video diffusion
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Three core innovations:

• Unified 3D tile-wise granularity for both 
quantization & sparsity.

• Denoising step-aware strategy adapting 
compression across diffusion timesteps.

• Hardware-optimized kernel leveraging 
FlashAttention & NVIDIA Hopper features.

• Achieves 7.09× kernel and 4.96× end-to-
end speedup on Wan 2.1–14B without 
quality loss
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Tile-wise FP8 Quantization:

• Divide Q/K/V into 3D tiles aligned with GPU 
compute units.

• Each tile quantized independently with local 
scaling factors.

• Preserves fine-grained activation dynamics, 
reduces memory cost 2×.

• Perfectly matches structured sparsity pattern 
and FlashAttention kernel



Quantization reduces precision (e.g., FP32 → FP8) to save memory and speed up computation.

Sparsity skips less important tokens to reduce quadratic attention cost.

Each method works independently but fails to optimize jointly.

Naïvely combining them leads to large performance drop.

Denoising Step-Aware Strategy

• Diffusion steps show varying 
sensitivity to compression errors.

• Early & late steps → tolerate 
coarse quantization & high 
sparsity.

• Mid steps → require fine 
precision & dense attention.

• Adaptive schedule aligns with 
diffusion dynamics
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1 ️⃣ Training-aware co-design matters
Jointly optimizing quantization and sparsity during training causes far less 
quality loss than post-hoc (training-free) compression — and unlocks much 
higher performance ceilings.

2 ️⃣ Algorithm × Infrastructure synergy
Real acceleration requires tight coupling between algorithm design and 
system/infrastructure implementation, rather than isolated model-level tricks.

3 ️⃣ FP8 and sparse attention for future deployment
FP8 quantization and structured sparse attention are key enablers for mobile 
inference and video world models, offering practical scalability to real 
applications.
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