Spatial Intelligence

From Virtual to Real Worlds

Zeyu Zhang

Talk @ Yahaha, Sep 18, 2025



“There are several characteristics of intelligent behavior. For example, the capacity to
understand the physical world, the ability to remember and retrieve information, the ability to
reason, and the ability to plan. These are four essential characteristics of intelligent systems or
entities.”

— Yann LeCun



From Specialist to Generalist
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3D and 4D models represent a significant shift from specialist models, which are designed for specific
tasks, to foundation models that can handle a wide range of tasks.



Specialist Model: Motion Mamba (2024)
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Motion Mamba is an efficient text-to-motion model with linear complexity.

Zeyu Zhang et al. Motion Mamba: Efficient and Long Sequence Motion Generation (ECCV 2024)



Specialist Model: Motion Mamba (2024)
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Specialist Model: Motion Anything (2025)

T&M-to-Dance

Text Queries

(a) Attention-based Temporal Masking

Key Frame Masking

Temporal Attention

QKV
o
Q KV
mer: (] O
Q KV
| Attention-based Key Frame Selection |
4 |
= ' \ﬁ’ ) 29 |
Text-to-Motion ! |

Embeddings:

C] Motion DTcxl

(b) Mul dal Motion Generation Archi

T
0O oo

rearrange

E [ Spatial Aligning Transformer | "

7,3

| Temporal Adaptive Transformer |

o
A

; ‘l Spatial Aligning Transformer l;‘

rearrang

D

l Temporal Adaptive Transformer ]

0D i

VQ-VAE Audio
Encoder Encoder

(c) Attention-based Spatial Masking
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Zeyu Zhang et al. Motion Anything: Any to Motion Generation

(d) A Block of Motion Generator
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Motion Anything is an multimodal-conditioned motion generation model.
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Specialist Model: Motion Anything (2025)




Specialist Model: Motion Avatar (2024)
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Motion Avatar is a feed-forward 4D generative model that can generate animatable meshes of both
humans and animals, conditioned on text and/or images.

Zeyu Zhang et al. Motion Avatar: Generate Human and Animal Avatars with Arbitrary Motion (BMVC 2024)



Specialist Model: Motion Avatar (2024)

A red robot is boxing. A red robot is doing hip pop dancing. A red robot is saluting.

A bear runs then stands then runs again. A bear walks then stands. A bear runs then walks hesitantly.



Specialist Model: ZPressor (2025)
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ZPressor is an efficient feed-forward 3D scene reconstruction model with bottleneck-aware compression.

Weijie Wang, Yuedong Chen, Zeyu Zhang et al. ZPressor: Bottleneck-Aware Compression for Scalable
Feed-Forward 3DGS (2025)



Specialist Model: ZPressor (2025)
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Specialist Model: 3D CoCa (2025)
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3D CoCa leverages 3D multimodal representation learning to tackle scene understanding through
large-scale contrastive pretraining.

Ting Huang, Zeyu Zhang et al. 3D CoCa: Contrastive Learners are 3D Captioners (2025)



Specialist Model: 3D CoCa (2025)
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GT: In a bright dining room, a long
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GT: A spacious indoor setting
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A visual comparison on the ScanRefer dataset showcasing indoor scenes described by
Vote2Cap-DETR++4, 3D CoCa (Ours), and the ground truth (GT).



What's next for 3D foundation models?

@ How can we achieve zero-shot generalizability across different tasks given the domain
knowledge gap between them?

@ How can we adjust a foundation model after conventional supervised post-training when
the outcomes are unsatisfactory on specific tasks?

@ And most importantly, how can we ground our foundation model in the physical world?



Synthetic Data Helps Enhance Generalizability
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CoT Data Engine. The point cloud of a scene is first sent to scene dscription generator to get a
description of the scene. Then based on the description, we apply Gemini-Pro to synthetic CoT data.



Scene-30K in 3D-R1
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Scene-30K contains diverse scene categories and question types. 3D-R1 demonstrates strong

performance across various tasks.



Generalizability: 3D-R1

3D Planning L%A

Human: Organize and tidy up the kitchen

3D-R1:

1. Wipe the dinning table to remove ...

2. Push all chairs neatly under the table...
3. Empty the trash cans beside ...

3D Scene Captioning &

3D-R1: In the kitchen, there is a sink,
two cabinets, a kitchen counter, two
windows, two trash cans, and ten chairs.
The trash cans are in front of the chairs,
while the chairs are behind the trash
cans ...

3D Reasoning

Situation: Standing just inside the kitchen
doorway, facing the long dining table
Question: Can | walk straight to the trash cans

3D Object Captioning @

beside the refrigerator without detouring around

the table?
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black
television
7/7;"::;7 ” 3D Visual Grounding
Instruction: The metallic ventilation unit
hanging above the stove top.
3D Question Answering Q 3D Dialogue e 3D-R1:
Question: What is the large rectangular piece
of furniture in the center of the kitchen with Can you assist me? the center is clean?
several tall chairs arranged around it? ?E ?E

3D-R1: Dining table.

3D-R1 is a generalist model capable of handling various downstream tasks and applications in a
zero-shot manner with incredible generalizability, significantly reducing the need for expensive
adaptation.



Adjust Output: Reinforcement Learning with Verifiable Rewards (RLVR)
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The policy model generates N outputs from a point cloud and question. Then perception loU, semantic
CLIP-similarity, and format-adherence rewards are computed, grouped, and combined with a KL term
to a frozen reference model to update the policy.



Enhanced Reasoning
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3D-R1 exhibits remarkable generalizability with enhanced reasoning capabilities.



Foundation Model: 3D-R1
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3D-R1 is an open-source generalist model that enhances the reasoning of 3D VLMs for unified scene
understanding.



3D Scene Dense Captioning (3D-DC)
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3D Object Captioning
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3D Visual Grounding (3D-VG)

3D-VG




3D Question Answering (3D-QA)
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3D Planning
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/ero-Shot Results




System and Memory: Nav-R1

What if we ground a 3D foundation model in embodied scenes? How can its reasoning
approach human-level intelligence? This is inspired by psychology.

“The division of labor between System 1 (fast) and System 2 (slow) is highly efficient: it
minimizes effort and optimizes performance.”
— Daniel Kahneman (Nobel Prize in Economics)



Fast-in-Slow: Nav-R1
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Nav-R1 features a Fast-in-Slow design that ensures rapid decision-making within long-horizon
planning..



Navigation Foundation Model: Nav-R1
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Nav-R1 is an embodied foundation model that integrates dialogue, reasoning, planning, and navigation
capabilities to enable intelligent interaction and task execution in 3D environments.



Results: Nav-R1
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Nav-R1: Reasoning and Navigation in Embodied Scenes

Qingxiang Liu, Ting Huang, Zeyu Zhang, Hao Tang




Bridging the Domain Gap in Post-Training: StereoAdapter
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StereoAdapter is a self-supervised adaptive model that allows robust underwater depth estimation.



Results: StereoAdapter
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StereoAdapter: Adapting Stereo Depth Estimation to Underwater Scenes

Zhengri Wu, Yiran Wang, Yu Wen, Zeyu Zhang, Biao Wu, Hao Tang



Works Iin Progress

@ Vision—Language—Action models for mobile robots such as robot dogs, UAVs, and
humanoid robots.

@ Video World Models
@ 4D Generative Models

Go to the trashcan and distinguish Go to the water barrel and avoid Go through the gap between the
the water barrel the box chairs and go to the table
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Third-person view Trajectory
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Our mobile robot’s VLA model follows user instructions to perform scene understanding, navigation,
and action.

Video



@ Do not abuse reinforcement learning for post-training; use RL only to adjust the
foundation model’s output.

@ Synthetic data and data-driven methods are the key to achieving scalability and
generalizability.

@ Work on unimodal LLMs that perform next-token prediction will not achieve advanced

machine intelligence. If you are interested in human-level intelligence, do not rely solely
on LLMs; instead, enhance spatial awareness in visual foundation models.



Thank you.
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