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“I think world modeling is a really promising research direction to explore, but one thing I've
found in some of my recent research is that it’s very easy to generate great-looking videos that
make critical modeling errors... Better downstream performance is really the gold standard for
evaluation.”

— Chelsea Finn



What Are Video World Models?

“One approach to tackle the high visual complexity of the world is to learn an action
conditioned video prediction model... Learning a world model to predict the outcomes of

potential actions enables planning in imagination, reducing the amount of trial and error
needed in the real environment.”

— Pieter Abbeel
“Video world models try to develop predictive models of what future perceptual input will be,
based on a current observation we have.”

— Chelsea Finn



Learn from Videos

The core idea of a video world model is to learn from videos (usually large-scale, unlabelled,
sequential visual data) in order to build an internal predictive model of the world — one that
captures spatial, temporal, and causal structure. There are following perspectives:

@ Understanding complex, long-form videos.
@ Predicting future states in video frames.

@ Physical interaction through video prediction.



Challenges in Learning from Long Videos

There are two significant challenges in learning from long videos:

@ Context size constraints: Most prior vision, video, and multimodal models are limited in
how many tokens or frames they can attend to (short context windows). This limits their
ability to reason over long videos (e.g. hours) or long documents. And attention
mechanisms have quadratic complexity, so naively scaling to very long sequences is
infeasible.

e Efficiency: Training on extremely long sequences results in high memory usage,
instability, and computational cost, which become major bottlenecks when scaling to
millions of tokens or frames.



Learn from Million-Length Videos: Large World Model (LWM)
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LWM argues that integrating video and language into a unified, autoregressive world model provides
more flexibility (e.g. image/video/text generation, question answering over long videos). Blockwise
RingAttention (ICLR 2024) divides a long sequence into blocks and connects them in a circular (“ring")
pattern so that each block attends to its neighbors, enabling efficient exact attention over million-token
contexts with linear memory growth.

Pieter Abbeel et al. World Model on Million-Length Video and Language with Blockwise RingAttention (2025)



T2V Results (V2V as well and more significant)
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Figure 5. Text to Video. LWM generates videos based on text prompts, autoregressively.



Video QA Results

Video Chat Over 1 Hour YouTube Video.

00:00:00 = (00:59:59

User: How many lemons were in the person's car?

GPT-4V: Sorry, | can't help with identifying or making
assumptions about the content in these images. X
Gemini Pro Vision: | am not able to count the number of lemons

in the person’s car because | cannot see any lemons in the
video. X

Video-LLaVA: The video does not provide an exact number of
lemons in the persons’ car. X

LWM (Ours): There are three lemons in the person’s car. +




Learn Solely from Videos

@ Videos contain richer spatial and temporal information than text (LLMs), learning solely
from them allows a model to infer how the world changes over time—capturing motion,

causality, and physical structure—without relying on external supervision such as text or
rewards.

@ Hence, there are methods seek to explore whether complex knowledge (rules, reasoning,

planning) can be learned solely from visual input (videos), without relying on textual
data, labels, or reinforcement learning signals.

@ Challenge: Inefficiency in raw video representations. Video frames contain a lot of
redundant or irrelevant visual details; encoding all pixel changes can be inefficient and
hinder the learning of high-level task knowledge.



Learn Solely from Videos: VideoWorlds

Stage 2: Next Token Prediction
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Latent Dynamics Model: VQ/FSQ + AR transformer. To address inefficiency and redundancy in
raw video change representation, Latent Dynamics Model compresses multi-step visual changes into
discrete latent codes (via VQ/FSQ) to act as a bottleneck, avoiding trivial copying. So the output is a
discrete latent token representing the state change or action-like dynamics between frames.

ByteDance, VideoWorld: Exploring Knowledge Learning from Unlabeled Videos (CVPR 2025)



Results: Go and Robot Manipulation

Figure 2: VideoWorld plays Go by generating next board state.

Figure 3: VideoWorld controls robotic arms across different environments.




Video Generation for Future State Prediction

@ The idea of video prediction in world modeling emerged prior to the modern era of video
generation.

@ Predicting only second-level videos is limited in practical applications. But what is the
proper paradigm to generate future video frames given a current visual perception in a
long and streaming fashion? (AR and Semi-AR)

@ How can we generate a geometrically consistent and physically plausible video that
can be grounded into the real world?



Starting Point: Stochastic Adversarial Video Prediction (SAVP)
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Predicting future frames from video input is inherently uncertain and multimodal: many different
futures could plausibly follow the same past. SAVP addresses this uncertainty by combining VAE-based

stochastic latent modeling with GAN-based adversarial training, enabling the generation of diverse yet

realistic future video frames.

Pieter Abbeel, Chelsea Finn, Sergey Levine et al., Stochastic Adversarial Video Prediction (2018)



Results: Robot Manipulation and Human Motion
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Diffusion: Bidirectional Attention

(a) Vanilla

FramePack compresses input frames into a fixed-length representation by prioritizing them by
importance so that the transformer’s context size remains constant regardless of video length, and uses
bi-directional sampling (i.e. generating frames in non-causal order with both past and future context)
to mitigate error propagation ( “drift").

Lvmin Zhang et al., Frame Context Packing and Drift Prevention in Next-Frame-Prediction Video Diffusion

(b) Anti-drifting
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(c) Inverted anti-drifting

Models (NeurlPS 2025 Spotlight)



Results: FramePack
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AR: Causal Attention
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Loong uses causal attention in an autoregressive fashion to generate video frames step by step, treating
each future frame as conditioned only on past frames to ensure temporal consistency.

Yuqing Wang et al., Loong: Generating Minute-level Long Videos with Autoregressive Language Models (2024)



Results: Loong's T2V
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Hulk wearing virtual reality goggles A bigfoot walking in the snowstorm Two pandas sitting at a table playing cards



Modern Video Generation Paradigms

@ Although diffusion-based and diffusion-forcing models can produce high-quality video
clips, their reliance on bidirectional attention makes inference inefficient. The

bidirectional attention prevents KV cache technique, leading to redundant computation
and prohibitive latency for long videos.

@ For AR models with causal attention, they can leverage cached KV states for faster
inference, but they often exhibit degraded quality when generating long videos.

@ What comes next to address the shortcomings of these two approaches? (Semi-AR)



Semi-AR: BlockVid
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BlockVid introduces a semi-AR “block diffusion” framework that generates videos chunk-by-chunk —
adapting diffusion within each chunk for high-quality denoising and AR causal conditioning across
chunks for temporal continuity.

Zeyu Zhang et al., BlockVid: A Scalable and Efficient Block Diffusion Framework for Minute-Long Video
Generation (2025)



Results:

Chunk-by-Chunk Prediction and Minute-Long Generation

BlockVid: Block Diffusion for High-Fidelity and
Coherent Minute-Long Video Generation
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Long Video Generation Form

Evolve

Single-shot video with camera motion.
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Geometrically Consistent: VMem
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VMem enforces geometrically consistency by indexing past views to surface elements (surfels,
typically computed from multi-view images or depth maps) they observed; when generating a new view,
it retrieves only those past views that correspond to the same 3D surfaces and uses them to condition
generation, thus anchoring novel-to-past view coherence.

Runjia Li, Philip Torr, Andrea Vedaldi, et al., VMem: Consistent Interactive Video Scene Generation with
Surfel-Indexed View Memory (2025)



Results: VMem

Input image Generated video (without VMem) Generated video (with VMem)

Input image




Evaluation of Geometrically Consistent: WorldScore

Score: 94.41 Score: 0

Score: 92.88 Score: 0

Haoyi Duan et al., WorldScore: A Unified Evaluation Benchmark for World Generation (2025)



Physically Plausible: VLIPP
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Stage2: Fine-level Motion Synthesis

Motion Trajectory

Motion Controllable
12V Diffusion Model

swny

Motion Animation Module

2
3
]
o
=
o
£
&
s
o
]
o
z

Synthetic Motion Video Optical Flow

VLIPP improves physical plausibility in video generation by using a two-stage framework: first a VLM
plans coarse, physically consistent trajectories (e.g. object bounding box changes) via chain-of-thought
and physics reasoning, then a video diffusion model is conditioned on those trajectories (via optical flow
and structured noise) to generate fine motion that aligns with physical laws.

Xindi Yang et al., VLIPP: Towards Physically Plausible Video Generation with Vision and Language Informed
Physical Prior (2025)



Results: VLIPP
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Evaluation of Physically Plausible: VBench-2.0
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VBench-2.0 evaluates physical plausibility (under its “Physics” dimension) by applying specialized tests
(via video-language models, anomaly detectors, etc.) that assess whether generated motion adheres to

physical rules (e.g. gravity, collision consistency, motion rationality) and comparing the results to
human judgments.

Dian Zheng et al., VBench-2.0 : Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness (2025)



Physical Interaction through Video Prediction

“One of the things that is really promising about leveraging video prediction models for robot
interaction is that through planning, we actually accomplished a wide range of tasks, including
those involving objects that the robot has never seen before.”

— Chelsea Finn



Early Attempts: Visual Foresight

1. Specify goal

Sergey Levine, Chelsea Finn et al., Improvisation through Physical Understanding: Using Novel Objects as Tools
with Visual Foresight (RSS 2019)



Structured World Models for Intentionality (SWIM)

Structured World Models

Pre-training on Human Videos
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Structured World Model involves 3 steps: (1) pretraining a world model on human videos, (2)finetuning
the world model on unsupervised robot data, and (3) using the finetuned model to plan to achieve goals.

Russell Mendonca et al., Structured World Models from Human Videos (RSS 2023)



Pretraining from Human Videos: SWIM




Results: SWIM
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HOI Pretraining from Videos (HOP)

3D hand-object trajectories Sim-in-the-loop retargeting Pretraining Downstream adaptation

HOP extracts 3D hand-object trajectories from in-the-wild videos, retarget them to a robot
embodiment via simulation, and train a task-agnostic manipulation prior.

Pieter Abbeel, Jitendra Malik et al., Hand-Object Interaction Pretraining from Videos (ICRA 2025)






@ Work on unimodal LLMs that perform next-token prediction will not achieve advanced
machine intelligence. If you are interested in human-level intelligence, do not rely solely

on LLMs; instead, enhance spatial awareness in visual foundation models and learn from
videos.

@ Downstream task is the gold standard for evaluation of video world models.



Thank you.



